If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2+10v-25=0
a = 3; b = 10; c = -25;
Δ = b2-4ac
Δ = 102-4·3·(-25)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-20}{2*3}=\frac{-30}{6} =-5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+20}{2*3}=\frac{10}{6} =1+2/3 $
| 4n^2-32n-6=-6 | | 30n^2=57n-18 | | 4=x+12 | | 8/4=n/3 | | 23p−4=6 | | 13x+7x-32=5x-3 | | x-(4-x)=6 | | 8x/4-1=4x/3 | | -2(8x-8)=8(1-x) | | 1+8v+8=1 | | -7(x-5)-7=8-6(x-6) | | 2/5x-8=-18 | | x=-8x+7 | | 8+3=5z | | 5(2r+3)=10r-7 | | 8(3+3x)-8(7x-1)=32 | | x(0.5x)=2 | | 2(5x-7)+5x=76 | | -6+8b=130 | | -7w=3w+9 | | -2x^2+x-38=0 | | 6=8b=130 | | 8y-7=3 | | 8u–7u=15 | | Z^3-6z+10=0 | | 4(-6x-1)+6x=-(1-4x)-3 | | 2a–a=9 | | 2=2-3z-5z | | -8+8v=40 | | 121=11/11x | | 1/7y+4=-14 | | 5x-7=6x+105 |